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Abstract. The scattering probtem related to the Schridinger operator with an external constant
hotnogeneous magnetic field is considered. The behaviour of the comresponding S-matrix and
resolvent operator near the Landau thresholds is studied. The large-energy asymptotics of the
resolvent operator are evaluated. A Levinson-type formula is obtained. It relates the number of
bound states to the determinant of the scattering matrix in the scattering threshold.

1. Introduction

The Schrédinger operator with an external constant homogeneous magnetic field
H=—(v—-ia(x)?+ V(&)  ax)=1iBxx (1.1)

provides a probleni which has as much mathematical interest as importance due to
applications in astrophysics and solid-state physics (see the review [1] and references
therein). The basic mathematical aspects of the scattering problem for this operator have
been studied in [2] where the existence and completeness of the corresponding wave
operators were proved for a large class of potentials V(x).

This paper is concerned with problems arising in context of near-threshold scattering
for the operator (1.1), when energy approaches one of the Landau levels [3] determining
branches of continuous spectrum. Related problems, such as the threshold structure of the
resolvent operator and S-matrix, as well as spectral identities (sum rules) like the Levinson
formula, are of much interest in potential scattering theory [4]. A lot of work has been done
in this field concerning Schridinger operators without external ficlds. For instance, quite
complete results were obtained on low-energy behaviour of S-matrix for various types of
potentials including slowly decreasing ones (see [4] and recent works [5-9]) and a number
of generalizations of the Levinson formula [10] were derived. Among them are complete
series of spectral identities for radial [11] and three-dimensional [12] Schridinger operators,
a two-dimensional analogue [13] of the Levinson formula, its generalizations for slowly
decreasing [14-17], non-local [18), non-central [19] and periodic [20] potentials. Similar

|| Permanent address: Department of Mathematical and Computationat Physics, Institute for Physics, University
of St Petersburg, 198904 St Petersburg, Russia.
9 Deceased. .

0305-4470/95/123493+41781950 (© 1995 IOP Publishing Ltd 3493



3494 V' V Kostrykin et al

problems have also been studied for three-body systems [21-25]. Witten index theorems in
supersymmetric quantum mechanics [26-28] also present extended versions of the Levinson
formula.

However, such problems have not been studied for the operator (1.1) and this is the
goal of our work. We restrict ourselves to the case where the electrostatic potential V(x) is
azimuthally symmetric, so that the preblem is actually two-dimensional. Also, the potential
is supposed to decrease fast enough as |x| — oo (roughly speaking, faster than |x]™>).

The main results of the paper consist of studying the threshold behaviour of the S-matrix
(theorem 2.5), evalvating the near-threshold and high-energy asymptotics of the resolvent
operator (theorem 2.7), and deriving an analogue of the Levinson formula (theorem 2.8).
To make the structure of the paper more transparent, we describe these and other important
resulis in section 2, leaving their proofs to subsequent sections.

2. Main results

The Hamiltonian (1.1) of a particle moving in the external magnetic field B = (0, §, B),
B > 0 is of the form

B?.
H=H+V Ho=—AxL~8§3+Tx}_+Bl3

where x3 = (x;, x2) and I3 is projection of the angular momentum onto the direction of the
field B. We suppose that the potential V is azimuthally symmetric, ie. V =V (x|, x3) =
V(p, x3) with p = [x_].

In this case, the Hilbert space H = L2(R%) can be decomposed into a direct sum
of orthogonal subspaces H, == L%(RZ; pdpdxs} corresponding to fixed values m of the
projection I3. The corresponding Hamiltonians with fixed m are of the form

Hy = Hyy+V Hom = k3 + Bm — 92, (2.1)
1 m? B2
— 2 2
hg:c = ap ;Bp + pz + "'—4 P (22)

The spectrum of Hop, is absolutely continuous and consists of an infinite number of branches
[€mp, 00). Their thresholds are the Landau levels

émp=B(m+|ml+1+2p) peNo={0,1,2,...}.

We denote by T, = {e,,,l,,};’,° ° o the set of all threshoids.
We assume the potential ¥V to be a smooth function satisfying the conditions

P> +x3
1+ p%+x3
[Ri pdp dxy (1+ )21V (o, x3)] < 00

—T1+pp
IV(P.JC3)!~<..C0|: } O<pogl

(2.3)

with I > 2. Under this assumption H,, is self-adjoint on D(Hy,) and has a finite discrete
spectrum [2].
The existence and completeness of the wave operators
UE =5 — lim eifinieiHomt
m t—F00

were proved [2] for a large class of potentials including those of the type (2.3).
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As the scattering operator S, = USV UL commutes with Hyy,, it can be represented
as a direct integral of the S-matrices at fixed energy:

Sm =f &5, (E) dE.
€md

Each S,,(E) acts in an accessory space Hp (E) related to a direct integral decomposition of
the Hilbert space H,, with respect to Hy,

P~ 1 ({600,090, GEi Fn(®) = [ @Fn(®) 4

where Hy,, acts in ’Hm (E) as multiplication by E.
Let us describe the structure of ’Hm {(E). Consider a unitary transform F,, : Hy — Hp
provided by the eigenfunction expansion associated with Ho,,:

(Fn )P, ka) = Lim. fR+ pdp drs Fu(p ksi 0.5 fpyx3) ks eR pelNo

2.5)
with the kernel

——ik3x3

Fm(p, k3 0, %3) = ﬁqﬁmp(p) _ (2.6)

where ¢y, stands for the eigenfunction of the Hamiltonian (2.2} that is expressed in terms
of the Laguerre polynomials [30],
¢mp(.p) = cmpe"-rﬂrlml/?-L};?ll(r)
B Bp! 2.7
= pz c%;p = —2—-—-—, . -
2 (p+1mp!
The transform (2.5) generates the diagonal representation of Hym: FmHomF ™ = €mp + Ic%
Let f = F . f € Hp. The inner product in H,, can be written as

+o0
o= as Z 0. )20, k)

n{E) _
= f dE Zum,,(E)Zf(p, g ENE@, Homp(EY).  (28)

Here kyp(E) = JE —€mp, Vmp(E) = (2k,,,p(E)) and n(E) is the largest integer
satisfying B(m + [m| 4+ 1 + 2r(E)) € E. In other words, n(E) yields the number of
Landau thresholds open at the energy E. From equation (2.8) it follows (see, e.g., [31])
that the layer Hom (E) of (24) is given by direct sum of a finite number of two-dimensional
linear spaces C? with elements

. n(E) g(+)
Fn(E) 2 g =P vmp(Edey 8= (2.9)

p=0
This is the space where the S-matrix S,(E) acts. To evaluate its explicit form it is convenient
to introduce a mapping Fy(E) : H,, — HulE) for E & [€mg, 50) \ T

FoEY ) = o B) fm pdp dx3 V(p, 33) £ (p, %5)

1 0
X [Fm(ps kmp(E); 0, %x3) (0) + Fu(p, '_kmp(E); P xs3) (1)} . (2.10)
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The adjoint operator Fy(E)* : Hp(E) — H,y is given by
n{E)

(Fy(EYg) (0, %3) = V(0,%3) ) /Vmp(E)

p=0

X AT (D, =Kmp(EY; p, %3)857 + Fu (D, kg (E); 0, X3)857} (2.11)
The S-matrix can be expressed in terms of these mappings and the operator

An(2) = |V|'?Rop(z)V/? (2.12)
where V12 = V|V|™Y2, Ron(z) = (How —z)".
Theorem 2.3. For all E € (gpg, 00) \ '), the S-matrix is vnitary operator in ’)‘:lm(E) given
by

Su(E) = I - 27iFp(E) [I + An(E +10)] Fiyin(E)". (2.13)
It is continuously differentiable in E on every open interval (€xp, €mpr1).

The S-matrix can also be expressed in terms of the asymptotics of the scattering
wavefunctions of the Hamiltonian (2.1) related to the modified Lippman—Schwinger equation
¥ p, EY = |VIV2Fnlp, Hhmp(E); ) — An(E +10¥57C; p, E). 2.14)
Theorem2.4. Equation (2.14) has a unique solution from L2(R2) for all £ & (€m0, 00)\'m.
The functions

¢S p, B) = V2 [Fu(p, ki (E); ) — Rom(E +10) V2 E(; p, E)]

satisfy the Schrédinger equation (H, — E)p&(:; p, E) = 0 in the sense of distributions.
Their asymptotics at |x3| — oo are given by

(i) (ps x3v P’ E) 9.‘3—>:|:00 eiEISka(E)qup (p)

+Z[‘*)(E) o | 57 P (0)

. .15
(:':) (p1 X3: P, E) X:i—”=F°° eﬂskmp(s)qup(p) )
+ Zj g (E)eT e O (0).
p=0
The coefficients ™) and & form the S-matrix elements
Kp (E) 1/2 t_é;)( E) r("")( E)
[Sn(E)],p = AN 2.16)
kmgt (E) rE) £(E)

This theorem shows that the scattering problem related to the Hamiltonian (2.1) is
effectively a multichannel 1-dimensional scattering problem with the S-matrix composed of
transmission and reflection coefficients.

We now proceed to deseribe the structure of the S-matrix near the thresholds. In order
not to bother with inessential details, we adopt two rechnical assumptions,

Assumption 2.1. For all p e Ny
[, pde & 62,00V (0,50 0.
RZ
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Assumption 2.2. 'There exists a norm limit of the operator [ + A, (z)]™! as z — Emp-

Both concern the threshold behaviour of the operator A,(z). For instance,
assumption 2.2 means that all thresholds are not exceptional points. To incorporate the
cases where these assumptions fail, one can adjust the technique of [7,8].

Let

Ump (0, x3) = V{0, x3)IV (0, x3)| "2, (0

Wnp(0, X3} = 1V {0, 23)|*bmp(0).
Assumption 2.1 is equivalent t0 (ipp, Wnp) ¥ O that enables one to define the oblique
projectors

2.17)

. (ump, ')wmp

Pop = ———— Oy =TI — Pup. 2.18
e (“mps wmp) e e ( )
Then the operator A,,(z) (2.12) near a threshold €, can be written as follows:
Ap(z) = im(umps Wip) + Mip(2) (2.19)

where k,ip(z) =Z — €pp, Imky, > 0. The first term represents the threshold singularity of
the operator, its form being related to assumption 2.1. Let M,(,f? = Mup(€mp) and

-1
T = [I + Qup M Qp] ™ Q.
This operator is well defined due to assumption 2.2,

Theorem 2.5. Let the condition (2.3) hold true with some [ > 2. Then in the limit E | €,
the transmission and reflection coefficients (2.16) have the asymptotics:

®p2p"
-1 .
tSNE) = g(ikmp(s)yt;j{ ;o]
7

-1
r&(E) = Zﬂ(ikmp(E))frf;). ;o)
J=

with the leading terms

B - +
!( )g = spp' - (ump, wmp) l(u.wps [Ir- M(O)T(O)IULP') wmp’)

7 my mg
i%(-xi‘!umps Tn(;op) Hf,:? Wy }
- (i, W )_I(M [~ M(O)T(O)] &) (2.20)
pp'0 = mp> Wmp mps mp Lmp Mg Winp?)
:F% {(x3tmp, Tn(g;) n;?r) Wipt)
where x3 is a multiplication operator by x; and
1202 = ox (s}
i) p > p':
I-1
tSHE) =D (ikmp(EDY S, + o(klzT)
= @21

P'p Pp.d

1-1
ryn(E) =Y (hnp(E)Yrs)  +0lh,)

=
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with the leading terms
) . — - X
t;*;,l = 1(€mp — Emp') llz[(umps wmp) ](ngpr)ump’s [1- T,,(,{‘,),)Mg]wmp)

=
:F‘lg' (nf;p')ump’ , Tn(g;)xZ wmp)]

£ . - -
r;fp)J = 1(5mp - Gmp’) Ilz[(”mpa T-Ump) l(n},?ump’s [z - T,;?,)M,E,?]wmp)

F % (7?;:;') By s T,,E?JCS wmp)] .

Thus, the threshold behaviour of the S-matrix elements depends on the type of transition.
Case (ii) corresponds to transitions to lower Landau levels. Case (i) corresponds to the
elastic transition (p = p”) and to the channels of excitation of Landau levels (p > p’). As

n& =1 and Qppwp, = 0, for the elastic transition the leading terms (2.20) are

1 =0

@ LB 2.22)

PO~

This follows

0 -1
[Sulenp +0],, = ( 0 ! )

whereas in the inelastic channels with p' < p the elements [Sm (€mp + 0)] op vanish due

to (2.21) and (2.16). From equations (2.10), (2.11), (2.13) and assumption 2.2 it follows

that the elements [S,,,(E)] - with p;, p» < p are continuous when E goes through €.

Therefore, calculating the determinant of Sy, (enp + 0) yields the following result.
Corollary 2.6. For all p e Ng\ {0}
det Sy (€mp + 0) = —det S, (€, — 0)
and det §,(€m0 +0) = —1.
. 'We now present results concerning the resolvent operators
Ra@) = (Hu~2)""  Row(@ = (Hon = 2)"'
and their difference
Ru(2) = Ru(z) — Rom(2). (2.23)
We introduce the notation
z=o>0\Ty={z > co:dist(@,Tp) 28>0 (2.24)

to denote a limit when z — ©o out of a small neighbourhood of the set of all thresholds.
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Theorem 2.7. The operator R,,(z) is trace class for Im z s 0. [ts trace tr R, (z) is analytic
in z on the open cut plane I, = C\ [€n0, o0} and has simple poles in the points of discrete
spectrum of H,,. Moreover, the following asymptotic expansions hold true:
(i) When z — €5,

-4
) (kmp(2)) & + 0(lKmp ) (2.25)
2 ( - Emp ) j=—1
where [ is from condition (2.3) and k,(z) is defined in (2.19).
(if) When z = o\ Ty,

tr R(2) =

(S

tr Bu(z) = f& dp dxs Vo, xs)[1 + o(1)] -
uniformly in argz.

As R, (z) is trace class, its trace can be expressed through the Krein’s spectral shift
function £,(E) [36] (see also [29]) as

tt Rp(z) = (E —2)"%,(E) dE. . (2.26)
Due to the abstract Birman—Krein theorem [37], this function is related to the S—-matrlx by
det S, (E) = exp{—2mi, (E)} ' 2.27)

a.e. in E € [€n0,.00). The Lh.s. is continuously differentiable on every interval (e, €mp+1)
due to theorem 2.1. Therefore, the same holds true for the function &, (E). Taking the limit
Imz — O of the imaginary part of (2.26) yields the trace relation for the operator Hpy:

N 1d
Intr R (E = i0) = &5 = log et 5, (E) (2.28)

for E € (€m0, 00) \ T'y,. This relation underlies the following Levinson formula.
Theorem 2.8. The Levinson formula for the operator (2.1):

1 . 1
T{Npy — %) =% log det Sy (€mo) — E-Egl\r' 5 logdet S, (E)

~3-0 [ o dns V(o3 2.29)
RZ
where N, is the number of eigenvalues of H, counting multiplicity.

Note that due to’ coroliary 2.6, (2ri)~ log det Sy, (€mo) is integer plus one half. This

means that

l)lml

1
—— lim_ logdetS,(E dp dxs V
= i g, logde (E) - f p x3 V(g, x3)

is integer. Taking the branch of the logarithm in (2 29) 50 that I = 0 reduces the Levinson
formala to

1
TNy —1/2) = % log det S, (€m0)-
We now proceed to prove the results described above.
3. The S-matrix

In this section we prove theorems 2.3 and 2.4. We begm with the following technical result
concerning the functions (2.17).
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Lemma 3.1, Let the condition (2.3) hold true for some / 2 0. Then the sum

ot (umpa 1+ Ix3|)ﬂump’)2
S = 3.1)
; p'Z:zﬂ A €mpf Cmp (

converges,
Proof. Let

n(p) = [R dxs (1 + D2 Vo, %)l

Then (3.1) can be rewritten as

(¢mp’ v!‘;bmp’ -1/2y2
= =tr{v (h?nsc + Bm) £
;; /EmpafCmp’ ( )

where 3 is defined in (2.2). Thus, it suffices to show that u (k% + Bm)~'/2 is Hilbert—
Schmidt that implies that its square is trace class.
To this end consider the norm

o0
fforChss® + Bm) ™25 = [o pdp v (0)rac(p, p, —Bm) (3.2)

where r3%°(z) is the resolvent operator of the Hamiltonian AS® with the kernel

r{p, p'sz) = 1 m)(Pm Z)¢(m)(ﬁ’>a z)
V7T, Wi (@)

expressed through the Whittaker functions [30]
610, 2) = r My (r)
857 (0, 2) = r VW, (r)
~2B|m|!

where r = Bp?/2, v =7 /(2B), and p = [m|/2. Equation (3.2) can be rewritten as

3.3

Wi{z) =

[ (S + Bm) 2|3 = W' (— Bm) f do ()™ (0, —Bm)E™ (o, — Brm).
By making use of the bound
16 (p, —~Bm)$™ (0, —Bm)| € CrWin(—Bm) p X (p) (3.4)
with
1+ p7! m#0
Amip} = 1
log {1 4 2)(1 + plog p)] m=90
and appropriate constants C,,, one gets
lv.=]
Mor (B -+ By < Cn f p8p B0 xm(0).
i}

The last integral converges if potential satisfies (2.3) with [ > 0.
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We now proceed to study the operator A,(z) (2.12). The resolvent Rg,(z) of te
Hamiltonian Hy, can be written as

Rom(2) = Z Pppro(z — emp) (3.5)
&
where P, stands for the eigenprojector of the Hamiltonian 23° (2.2)
Pmp = (¢'mp, ')¢mp (3-6)
and rp(z) is the resolvent oPerator of hy = —32 with the integral kernel
ro(xs, x3; 2) = 2\/_ exp (iv/zlxs ~ x3]) Im./z > 0. 3.7

This representation shows that A, (z) has threshold singularities of the form

An(@) = 5 Y- g ng) + M) )
p-‘U kmp (2

where the constituents of the sum are defined in (2.18), (2.19) and smooth operator M,,(z)
is given by

Mu(2) = Z: |V|1/2Pmpr0(z — €mp) V2 3.9
p=0
with }
Folxs, X33 2) = _:;—E exp (%—Elxg — xél) sin (-%E[.Xg - x_i,l) Im/z > 0. (3.10)

Theorem 3.2. The operator My, (z) is Hilbert-Schmidt for all z € C, holomorphic on the
open cut plane TI,, = C\ [€xg, 00) and norm continuous in I1,,. The same holds true for
Ap{z) and 84 (z) except for the points of the set [y,.

Proof. Consider the norm
o0

@B < Y [an [ a8 vtV
p.p'=0"

X|Folxs, X3; 2 — €mp)T0(X3, X33 T ~ €mp)]
where
Vpp’(x3) = {¢mp, [V, x3)‘¢mp') = (ump('s x3), ump'(', x3)).

Substituting explicit expressions (3.10) for the resolvent kernels and making use of the
bounds .

[&[x
1+ |k|x

Ie”‘"m sin kx/2)| Lc

and
lx —y? <4+ X1+ |y)?
(F4 e — yDA + Kllx - 3D (1 + DA + &)
leads one to

o0 2 2
(um_m (1+ |x3|) ump’)
IMa(2)3 < ¢ .
2 p;, (14 [Kp D1 + [Rmpr])
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The sum converges due to lemma 3.1, so that M, (z) is Hilbert-Schmidt for all z € C.
We now prove that the sum from (3.8) converges in the Hilbert—Scmidt norm for all
z €Iy This directly follows from lemma 3.1 and the bound

2
Z(ump; wmp)

p=0 kmp

o0

= Z (ump: Ump )
a p,p’:ﬂ‘\'z—emPVZ_‘emP)

2
< [sup { _ Smp H o (mp) )
P |z ~ €mpl p.F=0 ~/ EmpafEmp’
30 that A, (z) is also Hilbert-Schmidt for z € C\ Ty,

The boundedness of the norm |8, A (z) |2 for €T, can be proved as above by making
use of the bound

8 — X i
—ro(x3, X33 2 — €mp) | S I3 = x| (3.11)

9z = 4z — €mp| Az — €mp|?/?
that follows from (3.7). To prove the continuity of 3,4, (z) one can easily show that
0 o

;Am(z) m(z+5)]]

when 8 = 0 for z €T,

Theorem 3.2 enables one to apply the analytic Fredholm theorem [32] to invert the
operator I + Ay, (z). Denote yb £, C R the set of z for which the homogeneous equation
¢ + An(z)¢ = 0 has a non-trivial solution. The set &, N (g, b) is a closed set of null
Lebesgue measure for arbitrary interval (@, b) NT, = @. Let L) = &, N (—00, €mg) and
ELY = £, \ E). The operator

Tw@ =1 + An(z)]™! (3.12)
exists for z on the open cut plane It, = C\ [eng, o0). It is meromorphic in IT, with
finite-dimensional residues at poles z € £{? and norm continuously differentiable in
T \ (T U ELP). The set £S7 consists from the eigenvalues of Hy.

Due to theorems 4.5 and 4.6 of [2], the singular continuous spectrum of H,, is empty.
Also, from the general result of Froese et a! [33] it follows that K, has no embedded
eigenvalues. Thus, £ may only consist of some scattering thresholds ¢, (even if H,
has no eigenvalues at thresholds, the limit of 7,,(z) as z goes to some €, may not exist).
In this case the corresponding thresholds are exceptional points. We do not consider any
case that is excluded by assumption 2.2. Thus, in our case £5P = 6.

Proof of theorem 2.3. Equation (2.13) is standard, It iz based on the following
representation of the scattering operator Sy, (see, e.g., [311):

cQ '
Sm—I=s5—-lims—1 Rom (X — i81) — Rop (L + 18
s = lial~ [ Ron(h = 81 = Ron 3+ 80

X (V+VRu(A+162)V) Eg,,,(dl)]

with Egn{-) being the spectral measure of Hp,. To show that S,(E)} is continuously
differentiable, it suffices to prove this for the operator Fy12(E) (2.10). That follows from
the bound

1 n(E)

- (wmp, wmp) Z (wmpv -x3wmp) 1 ") (wmp» xgwmp)
32 = (E) 3 k" (E) (E)

H 9E |,
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Proof of theorem 2.4. Due to theorem 3.2, equation (2.14) has a unique solution for
E € (€m0, 0} \T'rs. Then the function ) (-; p, E) is correctly defined for Ry, (E +£0)V1/2
is bounded as a map from L*(R3) to L>(R2). It remains for us to prove the
asymptotics (2.15). Due to (2.14) the function p{F(-; p, E) is represented as follows:

98 py E) = fE(; p, E) + g9(; p. E)

with
nlE)

¥ p Ey=var {r — Y Gp(EYTL(E+ i0)|V|‘ﬂ] Fonlpr Thmp (E); ) (3.13)
p=0

where T,,(z) is defined by (3.12) and
Gp(E) = Pupto(E — &g +10)VI2,

The function g™ is given by the same equation where the sum is evaluated over p’ > n(E).
As the operator 3.,z Gp(E) is bounded, the function g™ is squared integrable and
does not contribute into the asymptotics (2.15).

Upon using the obvious asymptotics of the resolvent kernel ry (3.7) in (3.13) one

gets (2.15) with the coefficients given by

((E) = 8y, — T ¢S;E(E),Tm(z+i0)w,§,?(5))

(a:)(E)__m ¢(:h}(E), m(E+10)‘P(ﬁ)(E)) G
where

) (p, x33 E) = exp (Fixskmp(E)) timp (0, X3) 3.15)

W& (p, x3: E) = exp (£ixskny(E)) wmp(0, X3).
Comparing these formulae with (2.13) yields (2.16).

4. Near-threshold and high-energy expansions

In this section we prove theorems 2.5 and 2.7. We begin with the following auxiliary result
concerning the operator (3.9). Recall that we assume the condition (2.3) to be satisfied for
some [ = 2.

Lemma 4.1. In the limit z — €, the operator M,,,(z) has the asymptotics

=1

Myp(z) = ) (kg ()Y ML) + 00"

=0
which are valid in the Hilbert-Schmidt norm.
Proof. Tt suffices to show that the operator (37 /8kh, M) (2 = €mp) is Hilbert-Schmidt

for all j €@ —1. This can be done by making use of (3. 11) in a manner similar to the
proof of theorem 3.2. )

The next result concerns the threshold behaviour of the operator (3.12). By
assumption 2.2, Ty (€mp) is comrectly defined.
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Lemma 4.2. Near the threshold ¢, the operator T;,(z) can be expanded as follows:
1—1
Tu(z) = ) _(hmp(@)Y TS + okl @.1)
=0

which is valid in the operator norm. The leading terms are given by
T;,(;? =[I+ QmpM,Sg; Qmp]—l Qmp

T = —2aPpp — T (M) + 2a M) Prap M) TS + 2 (T M Py + Prop MO TD)

where @ = (Upyp, wmp)—l.
The proof can be carried out by adjusting the technique of [7].

Proof of theorem 2.5. For p’ £ p the functions <I>,(:;), and ‘Iff,,i? (3.15) can be expanded
near €y, as follows:

=1
=+ . 4 —_
OEUE) =3 (imp) n D0 | + okl
j=0

11 4.2)
WENEY =Y (ikmp) 1S W) | + oGl
j=0

which is valid in L2-norm. The leading coefficients are given by

@ & _
‘I’mp'.u = Ump ‘I"mp',o = Wmp'
0 pP'<p

o (o, x3) =
e Lt x38tmp (P, X3) p=p

0 P<p
U (0, x3) = ,

Ex3wWmp 0, X3) p=p.
Substituting (4.2) and (4.1) in (3.14) and using QppWmp = 0, Q,“;,Pu,,,p = ( leads one to the
statement of the theorem.

Lemma 4.3. The operators Ry, (z)VY/? and |V|Y2Ry,(z) are Hilbert~Schmidt for all

z €I,. ' ’

Proof. Consider, for instance, the operator [V['/2 Ry, (z). Represent it as follows
[VI"?Rom(z) = |VI/>D~ DR (z) 4.3)

where D = (h% + Bm)”zro' 12 (—=1), the operators #2%° and ry(z) being defined in
(2.1), (3.7). The operator DRy, (z) is bounded for Imz = 0 due to

1 k2 172 172
sup{( + 3)2 (€mp + Bm) ] < oo,
p.k3 Ik3 + €mp — z]

Consider the Hilbert-Schmidt norm

o0
I 1vi¥2p! I!§=f0 pdp ry*(p, p, —Bm)v(p)

where
o0

l [»=]
v(p)= [ dns V(o x5)irotes, 335 1) = 5 f dxs Vo, 53)l.
—-00

—00
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By making use of Eqgs. (3.3) and (3.4) one gets
Hvi2p~t3< §c fnﬁ pdp dx; |V{p, x3}| xm (0}

so that the product (4.3) is Hilbert-Schmidt. The operator Rgn,(z)VY? can be considered
in the same way.

We now proceed to study the resolvent’s difference (2.23). Consider the Born expansion
for its trace

TRa@) =2 £i@)  fa(2) =t [(—Ron(@)V)" Ren(2)]. @.4)

n=]

The following result shows that this seties is an asymptotic expansion as z — ©0.

Lemma 4.4. Let conditions (2.3) hold true with py = 1. Then in the limit FA
00\ I’y (2.24) the functions (4.4) have the following asymptotics uniformly in arg z:

@) =cz" +0(z™) 4.3)
where

f\,‘i.a'r(l—r:))"*t =5} ="} -
cp = (1)1 7 f do dx V*(p, x).
n 0 ~00

Proof. We give the proof for the case Imz > 0. Consider equation (3.5) for the operator
Rop(2). Tt can be rewritten as

o3 0 ]
Rom(z) =1 E Pmpf dr et t—empda—ithe
p=0 0

where the last exponent is the free propagator

12
exp[ (x_4:c)_} t>0.

I

—ith N =
exp{—itho}(x, x") Wi
Substituting this in (4.4) yields

3 n1 oo -
falz) =~ (-—]) f f o dty - dhy dtl exp fiz@+a+ - +)}

o > _—
xf f dxod_xl...dx,,exp{ Z(x’ xﬁ'l) }
-0 —00 i=0

XFE (B, .oty F 005 X150 s X)) (4.6)
where x,,1 = xp.
Fliyennstpi Xty eees Xa) = Z Z exp [—12:,5,% } TT Vo1 ) (.7
p=0  p,=0 =1 j=1
with ppy1 = py and
Vopr (£) = {@mp, V2 X)mpr ). 4.8)

The integral over xp in (4.6) involves only an exponent of a quadratic polynomial in xo and
is evaluated explicitly. After that the dependence of the resulting integrand on £y, £, is only
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through the sum f, 41, Passing to new variables 7. = #=t 1, calculating the integral over
z_, and denoting 7, = ¢, yields

et LY T T i [ e
faz) =¢e (Zﬁ)./[) j;dtn dr, tl---r,,_[exP{mT}

00 o i . — 2
xf f dx; -+ dx, exp[—iz-(—x"—ﬁ?;l)}
-00 —0a =1 J

j
XE (B, ee s tad Xby o ooy Xn) 4.9
where Xapp=x1and T =4+ J---+ 1.
In (4.9) the z-dependence of integrand is factorized in the first exponent. That is why
the asymptotics at z — ©¢ are determined by a vicinity of the point #; = --- =1, = 0.
First, let us evaluate the asymptotics of F near this point. To this end we rewrite (4.7) in
an integral form. Substituting in (4.8) the explicit expressions (2.7) for the function ¢,
and making use of the addition formula for the Legendre polynomials [34]

o0 !y =[mlf2 ! T
2 pimlpyzim _gro™” Sl Tt Vrrg
;Cmpl';n (LM (P =B 1—7 &P 1 my: Jim| 2'1_—§.
where I, stands for the modified Bessel function, leads one to the representation

i—n . ._|mln
Fiti,...otni X1, ..., X)) =1 " exp —1BmT+m’T

) o
X[) ./(; p1dpy -+« ppdp, V(or, x1) -+ - V{py, xn)

n . A.'
x| | A exp {13" (p? + p%y) cos Btj} Tt (Mj010741) (4.10)
=t

where p,41 = oy and A; = B/(Zsin Brj).
In the limit ¢; — 0 (A; — ©0) one can replace the Bessel functions by their asymptotics

Tn(A) = @)™ " exp (Hid ¥ inm/2 F in/4) + O (A7), @.11)
= _

Upon substituting this in (4.10) it is readily seen that the leading order of the asymptotics
is due to the terms of (4.11) with the minus sign, so that

a2
yeeos by R m~ (=1 |melre _1
Fn Iny X1, x) ~ (=1) (277)

o0 <
Xfo /ﬂ dp1--+dps V (o1, 517) -+~ V (o, 20 J)

n . A—' 2

X 1_[ VAj exp {131 (7 — pj41) } . 4.12)
j=1 ;

This integral is evaluated by making use of the asymptotics (A; — 00)

= A A
f dp F(p)exp {171 (o1 — P + '132 (o —Pz)z}
1}

| 2w MM A1p1 + Aaps
~ Cm/4 ex {l —_ 2] J (_""_J
A1+ Aa P12 A+ 220) b1 A Ao

4.13)
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which follows from the Erdelyi lemma [35]. Applying it repeatedly to the integrals of (4.12)
over pz,..., pn yields

oo
Fty, ooty Xryenn, 2,) ~ 12(—1)""'"5“/4@1")*1/2[0 dp V (o, x10) -+ V (0, xs0)

which describes the asymptotics of F as £ — 0.
Upon substituting these asymptotics in (4.9} for f,(z) the integral over x1, ..., x, takes
a form like (4.12). Tts asymptotics as ¢; — 0 can be evaluated by means of (4.13) to yield

_1 (Iml+1r dr (1314 % * n
fa@) ~—=(=1) e do dx V*{(p, x)
4z o o

o0 == tll iTs-
X dty--odty | =J ) "2
0 0 T

The last integral is calculated explicitly by passing to new variables
k
L=y 4  k=12...n

This yields the asymptotics (4.3).

Proof of theorem 2.7. From the relation
ém(z) = _‘ROM(Z)VUZT:H(Z)[VlquOm(Z)
and lemma 4.1, it follows that R,(z) is trace class for Im z # 0. The last equation follows

0 Rn(2) = ~ [ |VIV2RE, @ V2T, @)] = — [Tm(z) A (z)]
As z goes to €xp, by making use of decomposition (2.19) one can rewrite this in the form
1 a8
11| Tp(z)—M, .
Wy (2) l: m(2) 9z mp(Z)]

Lemmas 4.1 and 4.2 follow statement (i) of the theorem. Lemma 4.4 follows statement (ii).

tr B (2) = 1 @np(2)) 7> Wmps T () Wrip) —

5. The Levinson formula

We begin with a result that extends corollary 2.6.

Lemma 5.]. Foral p=12,...
logdet Sy, (€mp — 0) — logdet Sy, (€ + 0) = mri. (5.1)

Proof. Due to theorem 2.7, the function tr R, (z) has a simple pole in z = €mp With
residue 1 5. Integrating it anticlockwise along a small loop y, around e, yields

dz tr Bu(z) = 7i.
43 }
Due to (2.26), the integral can be as well calculated through the spectral shift function to
give
35 dz tr Ry(z) = 27i lim [€n (€mp + &) — &m (€mp — 8)].
¥ §—>0
Therefore, the spectral shift function has a jump in every threshold:

En (Emp +0) e %-m (emp - 0) = %.
The relation (2.27) between §,(E) and the S-matrix follows (5.1).
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Proof of theorem 2.8. Let M, be the number of eigenvalues of the Hamiltonian Hy,, u;
be their multiplicities and Ny, = Zﬁ”‘l t;. Define the function
(—1)'"']

F(2) =tr Rn(z) — o

f dp dxs V(p, x3)
;43

where the last term is the leading order of the asymptotics of the trace as z — oc \ [y.
Theorem 2.7 foliows that F(z) is analytic on I1,. It has simple poles with residues % in
the points €p,, My poles in the eigenvalues of H, with residues —p;, and a simple pole
in the origin.

Let R be a larpe positive number lying between two thresholds €ny,, €pns with
n = n{R). Consider a contour C that goes from a point €, — § along the upper cut
z = E +i0 to the point R +i0, then anticlockwise along circle Cr of radius R to the point
R — 10 and then along the lower cut z = E —i0 to the initial point €, — 8. The integral of
F(z) along this contour is the sum of residues in the eigenvalues and in the origin:

j{; F(z) dz = =27iN,, —~ 1(-1)'mlf dp dxs V (p, x3).
c 2 R

In the limit R — 00 \ T' contribution of the circle Cg vanishes as F(z) = o(z™'} due to
theorem 2.7. By making use of (2.25) and (2.28), the integrals along the upper and lower
cuts are expressed through the S-matrix and the sum of residues in the thresholds. One gets

n(R)
— log det S,; (€m0 + 0F) — mi+ logdet S, (R) + Z log det .S, (E)[i:i fg —xwin(R)
p=1

= —2miN, — 2(=1) f dp dxs V (0,%).
2 R%-

Due to lemma 5.1, the jumps of the S-matrix in thresholds cancel the last term of the Lh.s.
In the limit R — co \ I}, one gets (2.29).
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