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Abstract The scattering problem related to the Schrsager operator with an extemal consfant 
homogeneous magnetic field is considered. The behaviour of the corresponding S-matrix and 
resolvent operator near the Landau thresholds is studied. The largeenergy asymptotics of the 
resolvent operator are evaluated. A Levinson-type formula is obtained. It relates the number of 
bound states to the determinant of the scattering maatrix in the scattering threshold. 

1. Introduction 

The Schrodinger operator with an extemal constant homogeneous magnetic field 

x = -(v - i a ( x ) Y  + V ( X )  &j = ;i x (1.1) 
provides a probleni which has as much mathematical interest as importance due to 
applications in astrophysics and solid-state physics (see. the review [l] and references 
therein). The basic mathematical aspects of the scattering problem for this operator have 
been studied in [2] where the existence and completeness of the corresponding wave 
operators were proved for a large class of potentials V ( x ) .  

This paper is concerned with problems arising in context of near-threshold scaaering 
for the operator (l.l), when energy approaches one of the Landau levels [31 determining 
branches of continuous spectrum. Related problems, such as the threshold stlucture of the 
resolvent operator and S-matrix, as well as spectral identities (sum rules) like the Levinson 
formula, are of much interest in potential scattering theory [41. A lot of work has been done 
in this field concerning Schriidinger operators without extemal fields. For instance, quite 
complete results were obtained on low-energy behaviour of S-matrix for various types of 
potentials including slowly decreasing ones (see [4] and recent works [5-9]) and a number 
of generalizations of the Levinson formula [lo] were derived. Among them are complete 
series of spectral identities for radial [Ill and three-dimensional [U] Schrdinger operators, 
a two-dimensional analogue [13] of the Levinson formula, its generalizations for slowly 
decreasing 114-171, non-local [la], non-CentraI [I91 and periodic 1201 potentials. Similar 

11 Permanent address: Department of Mathematical and Computational Physics, Institute for Physics, University 
of St Petersburg, 198904 St Petersburg. Russia. 
9 Deceased. 
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problems have also been studied for three-body systems [21-251. Witten index theorems in 
supersymmetric quantum mechanics [26-281 also present extended versions of the Levinson 
formula. 

However, such problems have not been studied for the operator (1.1) and this is the 
goal of our work. We restrict ourselves to the case where the electrostatic potential V(x) is 
azimuthally symmetric, so that the problem is actually two-dimensional. Also, the potential 
is supposed to decrease fast enough as 1x1 + CO (roughly speaking, faster than IxI-~). 

The main results of the paper consist of studying the threshold behaviour of the S-matrix 
(theorem 2.5), evaluating the near-threshold and high-energy asymptotics of the resolvent 
operator (theorem 2.7), and deriving an analogue of the Levinson formula (theorem 2.8). 
To make the structure of the paper more transparent, we describe these and other important 
results in section 2, leaving their ploofs to subsequent sections. 

V V Koshykin et a1 

2. Main results 

The Hamiltonian (1.1) of a particle moving in the external magnetic field B = (0, 0, E ) ,  
B > 0 is of the form 

2 B2 H = Ho + V Ho = -Ax, - 8, + - x i  + BE3 
4 

where XL = ( X I ,  x2) and 13 is projection of the angular momentum onto the direction of the 
field B. We suppose that the potential V is azimuthally symmetric, i.e. V = V ( l x ~ l ,  x3) = 
V(P,X~)  with P = IxLI. 

In this case, the Hilbert space 31 = L2(R3) can be decomposed into a direct sum 
of orthogonal subspaces Em = L2@$; pdpdx3) corresponding to fixed values m of the 
projection 13. The corresponding Hamiltonians with fixed m are. of the form 

(2.1) Hm = Horn + V Horn = h r  + Em - 
1 m2 E2  

h F = - a  --a,+-,+-p, 
, P  P 4  

The spectrum of Hh is absolutely continuous and consists of an infinite number of branches 
[emp, CO). Their thresholds are the Landau levels 

emp = E(m + (mi + 1 + 2p) p E NO = {0,1,2, . . .). 
We denote by rm = [emp}:+ the set of all thresholds. 

We assume the potential V to be a smooth function satisfying the conditions 

(2.3) 

with 1 2 2. Under this assumption Hm is self-adjoint on 'D(H0,) and has a finite discrete 
spectrum [2]. 

The existence and completeness of the wave operators 

were proved 121 for a large class of potentials including those of the type (2.3). 
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As the scattering operator S,,, = Ui-)*UA+) commutes with Horn. it can be 
as a direct integral of the S-matrices at fixed energy: 

Sm = ld @&(E) dE. 
m 

i represented 

Each S,(E) acts in an accessory space %,,,(E) related to a direct integral decomposition of 
the Hilbert space Em with respect to Ho, 

(2.4) 

where Horn acts in %,,,(E) as multiplication by E. 

provided by the eigenfunction expansion associated with Ho,: 
Let us describe the structure of gm(E) .  Consider a unitary transform Fm : Em + 'H, 

(Fmf)(p,k3)=l.i.m. p d p h 3 3 d p , k 3 ;  P . x ~ ) ~ ( P . x ~  k3 E R  P E N O  

with the kernel 

where @mp stands for the eigenfunction of the Hamiltonian (2.2) that is expressed in terms 
of the Laguerre polynomials [30], 

4mpmPLo) = mp e-r/2rlml/2L~l(r) 

B z  c 2 =  Bp! 
r = - p  

2 mp (pf lml)! '  
(2.7) 

The transform (2.5) generates the diagonal representation of Horn: FmHo,,,Fm" = cmP +e. 
Let f = FmfL f E Em. The inner product in 'H, can be written as 

Here kmp(E) = a; ump(E) = (2kmp(E))-' and n(E) is the largest integer 
satisfying B(m + Iml + 1 + 2n(E)) < E. In other words, n(E) yields the number of 
Landau thresholds open at the energy E. From equation (2.8) it follows (see, e.g., [31]) 
that the layer %,,,(E) of (2.4) is given by direct sum of a finite number of two-dimensional 
linear spaces C2 with elements 
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The adjoint operator Fv(E)* : G,,,(E) --t X, is given by 

( F v ( E Y g ) @ , x 3 ) =  V @ . x 3 ) c m  

V V Kostrykin er a1 

" ( E )  

p=o 

x (FdP, -kmp(E): P. X 3 ) Q  + FAP, k,p(E);  P.x3)g;-'}. (2.11) 

A,(z) = l V l l ~ z R o m ( ~ ) V 1 ~ z  (2.12) 
The S-mahix can be expressed in terms of these mappings and the operator 

where V1I2 = VIVI-lp, Ro,(z) = (Hh - z)-'. 

Theorem 2.3. For all E E (CO, CO) \ r, the S-manix is unitary operator in f i , (E)  given 

&(E) = I - 2rriFvln(E) [ I  + A,(E + io)]-' FIVIw(E)*. (2.13) 
It is continuously differentiable in E on eve6 open interval (E,~.E,~+~). 

by 

The S-matrix can also be expressed in terms of the asymptotiw of the scattering 
wavefunctions of the Hamiltonian (2.1) related to the modified Lippman-schwinger equation 
@;*)(.; p .  E )  = lV11/2Fm(p, &kmp(E); .) - A,(E +io)@;*)(.: p ,  E ) .  (2.14) 

Theorem~Z.4. Equation (2.14) has aunique solution from Lz(R$) for all E E (€,a, m)\rm. 
The functions 
9:*)(.: p ,  E )  = 6 [F,(p, +k,(E); .) - &,(E + iO)V1'z+L*)(.; p .  E ) ]  
satisfy the Schrijdinger equation (H, - E)vL*)(.: p ,  E )  = 0 in the sense of distributions. 
Their asymptotics at 1x31 + CO are given by 
9:*%J, x3: P, E )  -x3_**oo e*~3k-~(E)4 ,~  ( p )  

The coefficients t(*) and r(*) form the S-matrix elements 

(2.15) 

(2.16) 

This theorem shows that the scattering problem related to the Hamiltonian (2.1) is 
effectively a multichannel 1-dimensional scattering problem with the S-matrix composed of 
transmission and reflection coefficients. 

We now proceed to describe the structure of the S-matrix near the thresholds. In order 
not to bother with inessential details, we adopt two technical assumptions. 

Assumption 2.1. For all p E NO 
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Assumpdon 2.2. There exists a norm limit of the operator [I + Am(z)]-I as z +. emp 

Both concem the threshold behaviour of the operator A,(.?). For instance, 
assumption 2.2 means that all thresholds are not exceptional points. To incorporate the 
cases where these assumptions fail, one can adjust the technique of 17.81. 

Let 

(2.17) 

Assumption 2.1 is equivalent to (ump, utmp)  # 0 that enables one to define the oblique 
projectors 

u m p ( P ,  ~ 3 )  = V(P, ~ 3 )  I V(P,  1 3 )  I-”’@mp(P) 

w m p ( ~ v x 3 )  I V ( P , ~ ~ ) I ” ~ ~ ~ ~ ( P ) .  

Then the operator A i ( z )  (2.12) near a threshold emp can be written as follows: 

(2.18) 

(2.19) 

where kip(z)  = z - cmP. h k m P  > 0. The first term represents the threshold singularity of 
the operator, its form being related to assumption 2.1. Let Mfj = M m p ( ~ m p )  and 

Ti? = [ I  + QmpMfjQmp]-l  G p .  

This operator is well defined due to assumption 2.2. 

Theorem 2.5. Let the condition (2.3) hold true with some 1 > 2. Then in the limit E 
the transmission and reflection coefficients (2.16) have the asymptotics: 

emp 

(i) P > PI: 

(2.20) 

(2.21) 



Thus, the threshold behaviour of the S-matrix elements depends on the type of transition. 
Case (ii) corresponds to transitions to lower Landau levels. Case (i) corresponds to the 
elastic transition ( p  = p’)  and to the channels of excitation of Landau levels ( p  > p’). As 
qg) = 1 and Qm,wmP = 0, for the elastic transition’the leading terms (2.20) are 

(2.22) 

whereas in the inelastic channels with pl c p the elements [Sm(cmp + 0)IFp vanish due 
to (2.21) and (2.16). From equations (2.10),(2.l1),(2.13) and assumption 2.2 it follows 
that the elements [Sm(E)Iplp2  with p1. p~ i p are continuous when E goes through cmp. 
Therefore, calculating the determinant of Sm(cmP + 0) yields the following result. 

Corollary 26. For all p E NO \ {O} 

det &,(emp + 0) = - det Sm(emp - 0) 

and det Sm(cmo + 0) = -1. 

We now present results concerning the resolvent operators 

Rm(z) = ( H m  - z)-l Rom(z) = (No, - z)-’ 
and their difference 

k ( z )  = Rmk)  - R o ~ ( z ) .  (2.23) 

We introduce the notation 

z + co\r, = (Z --f C O :  dis t (z , rm)>6 >O} (2.24) 

to denote a limit when z + 00 out of a small neighbourhood of the set of all thresholds. 
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Theorem2.7. The operator k,(z) is trace class for Imz # 0. Its trace trk,(z) is analytic 
in z on the open cut plane il, = C \ [c,~, 00) and has simple poles in the points of discrete 
spechum of H,. Moreover, the following  asymptotic^ expansions hold true: 
(i) When z + emp 

where 1 is from condition (2.3) and kmp(z) is defined in (2.19). 
(ii) When z + ca \ r, 

uniformly in argz. 

As &(z)  is trace class, its trace can be expressed through the Krein's spectral shift 
function 5;n(E) [36] (see also 1291) as . .  . 

m 
trk , ( ) -  z - - /_(E -z)-'t,(E) dE. (2.26) 

Due to the abstract Birman-Krein theorem 1371, this function is related to the S-matrix by 
det &,(E) = exp{-2iri<,(E)) (2.27) 

a.e. in E E [6,0..00). The 1.h.s. is continuously differentiable on every interval ( E , , , ~ ,  ckp+l) 
due to theorem 2.1. Therefore, the same holds true for the function C,(E). Taking the limit 
Imz + 0 of the imaginary part of (2.26) yields the trace~relation for the operator H,: 

(2.28) 
I d  
2i dE 

for E E [E,,,, 00) \ r,. This relation underlies the following Levinson formula. 

Theorem 2.8. The Levinson formula for the operator (2.1): 

Imtrk,(E f io) = f-- logdetS,(E) 

1 1 
n(N, - i) - - logdetS,(e,o) - lim -logdetS,(E) 

2 -2 i  E-+m\rm 2i 

-4(-1)'"'/ d p h  V(p,x3) (2.29) nc: 
where N, is the number of eigenvalues of H, counting multiplicity. 

Note that due to,corollary 2.6, (2ni)-] logdetS,(.d is integer plus one half. This 
means that 

1 (-1p Z = - lirri logdetS,(E) - - 4j7 li dp'dx3 V(P, x3) 

is integer. Taking the branch of the logarithm in (2.29) so that Z = 0 reduces the Levinson 
formula to 

2iir h w r .  

1 r(Nm - 1/2) = - logdetS,(e,o). 
2i . .  

We now proceed to prove the results described above. 

3. The S-matrix 

In this section we prove theorems 2.3 and 2.4. We begin with the following technical result 
concerning the functions (2.17). 
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Lemma 3.1. Let the condition (2.3) hold true for some 1 2 0. Then the sum 

(ump, (1 + Ix3I)"~mp,)~ 
JGJG p=o p'=O 

converges. 

Proof: Let 

Then (3.1) can be rewritten as 

where h r  is defined in (2.2). Thus, it suffices to show that q ( h r  + Bm)-I/* is Hilbert- 
Schmidt that implies that its square is trace class. 

To this end consider the norm 
m 

Ilurfhr + Bm)-'I211; = l pdp v ; (p ) rF(p .  p,  -Bm) (3.2) 

where r r ( z )  is the resolvent operator of the Hamiltonian h? with the kernel 

(3.3) 

The last integral converges if potential satisfies (2.3) with E 2 0. 



.~ ~~~ 
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We now proceed to study the operator A,(z) (2.12). The resolvent &(z) of the 
Hamiltonian Horn can be written as 

m 

Rom(z) pmpro(z - Emp) (3.5) 
P=o 

where Pmp stands for the eigenprojector of the Hamiltonian h z  (2.2) 

and ro(z) is the resolvent operator of ho = -3; with the integral kernel 
Pmp = {hpmpr .)&p (3.6) 

1 
ro(x3, x i ;  z) = - exp (izlilx3 - .;I) ImJZ > 0. (3.7) 

2 4  
This representation shows that A,(z) has threshold singularities of the form 

(3.8) 

where the constituents of the sum are defined in (2.18). (2.19) and smooth operator Mm(z)  
is given by 

m 

p=o 
M,(z) = IVI"ZPmpF0(Z - Emp)V1/Z (3.9) 

with 

iO(x3,x;;z)=--exp (if -1X3-x;I . ) sin ' (?I -x3-x31 ' )  I m & > O .  (3.10) 

Theorem 3.2. The operator Mm(z)  is Hilbert-Schmidt for all z E @, holomorphic on the 
open cut plane U, = 4: \ [emo. CO) and norm continuous in E,,,. The same holds true for 
A&) and azAm(z) except for the points of the set r,,,. 
ProoJ Consider the norm 

J z  

and 

leads one to 
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The sum converges due to lemma 3.1, so that Mm(z) is Hilbert-Schmidt for all z E C. 

z Zrm. This directly follows from lemma 3.1 and the bound 

V V Kostrykin et a1 

We now prove that the sum llom (3.8) converges in the Hilbert-Scmidt norm for all 

so that A,(z) is also Hilbert-Schmidt for z E C \ r,. 

use of the bound 
The boundedness of the norm Ila,A,(z) 112 for zZF, can be proved as above by making 

(3.11) 

that follows from (3.7). To prove the continuity of a,A,(z) one can easily show that 

when 6 + 0 for z Z r,. 
Theorem 3.2 enables one to apply the analytic Fredholm theorem [32] to invert the 

operator Z + A,(z). Denote yb &, C iR the set of z for which the homogeneous quation 
4 + A,(Z)@ = 0 has a non- vial solution. The set &, i l (a, b)  is a closed set of null 
Lebesgue measure for arbitrary interval (Q, b) n I’, = 0. Let &A-) = E, n (-00, G,O) and &A+) = &, \ &A-). The operator 

(3.12) 
exists for z on the open cut plane II, = C \ [E,@, 00). It is meromorphic in n, with 
finite-dimensional residues at poles z E &A-) and norm continuously differentiable in 
n, \ {r, U &A+)]. The set &A-) consists from the eigenvalues of Hm. 

Due to theorems 4.5 and 4.6 of [2], the singular continuous spectrum of H, is empty. 
Also, from the general result of Froese ez al [33] it follows that H, has no embedded 
eigenvalues. Thus, &A+) may only consist of some scattering thresholds smP (even if H, 
has no eigenvalues at thresholds, the limit of T , ( z )  as z goes to some E , , , ~  may not exist). 
In this case the corresponding thresholds are exceptional points. We do not consider any 
case that is excluded by assumption 2.2. Thus, in our case &A+) = 0. 

Tm(z) = [ I  + A,(z)I-’ 

- 

Proof of theorem 2.3. Equation (2.13) is standard. 
representation of the scattering operator S, (see, e.g., [311): 

It is based on the following 

x ( V +  VR,(A+i&)V)Eo,(dl*) 

with EO,(.) being the spectral measure of Ho,. To show that & ( E )  is continuously 
differentiable, it suffices to prove this for the operator Fvirr(E) (2.10). That follows from 
the bound 
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Proof of theorem 2.4. Due to theorem 3.2, equation (2.14) has a unique solution for 
E E ( a o ,  w)\r,. Then the function p,f*)(.; p .  E) is correctly defined for Rom(E&0)V1/* 
is bounded as a map from L2(R$) to L"(R$). It remains for us to prove the 
asymptotics (2.15). Due to (2.14) the function pi*)(.; p ,  E) is represented as follows: 

p;*+.; p .  E )  = f'*'(.; p .  E )  +g"(.; p ,  E )  

with 

where Tm(z) is defined by (3.12) and 

G,(E) = p m p r o ( ~ ~ -  cmp + i ~ ) v ~ / ~ .  

The function g(*) is given by the same equation where the sum is evaluated over p' n ( E ) .  
As the operator xq,,n(E) G,,(E) is bounded, the function g(*) is squared integrable and 
does not conhibute into the asymptotics (2.15). 

Upon using the obvious asymptotics of the resolvent kernel ro (3.7) in (3.13) one 
gets (2.15) with the coefficients given by 

4. Near-threshold and high-energy expansions 

In this section we prove theorems 2.5 and 2.7. We begin with the following auxiliary result 
concerning the operator (3.9). Recall that we assume the condition (2.3) to be satisfied for 
some 1 > 2. 

Lemma 4.1. In the limit z -+ E,, the operator Mmp(z)  has the asymptotics 

which are valid in the HilbertSchmidt norm. 

ProoJ It suffices to show that the operator (aj/akiPMmp)(z = cmp) is Hilbert-Schmidt 
for all j < 1 - 1. This can be done by making use of (3:11), in a manner similar to the 
proof of theorem 3.2. 

The next result concems the threshold behaviour of the operator (3.12). By 
assumption 2.2, Tm(cmP) is correctly defined. 
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Lemma 4.2. Near the threshold cmp the operator Tm(z) can be expanded as follows: 

which is valid in the operator norm. The leading terms are given by 

TA: = 11 -I- QmpM,$Qmpl-lQmp 

1 + p M(O)T(O) T(1) = -2apmp - TA;) (@ + 2aM(0)p M") T@) + 2a (T(0)MLo)p m p  mp mp m p  mp mp mp mp mp mp mp mp 

where a = (ump, wmP)-I. 

The proof can be carried out by adjusting the technique of 171. 

Proof oftbeorem 2.5. For p' < p the functions a,$ and Y$! (3.15) can be expanded 
near cmp as follows: 

Substituting (4.2) and (4.1) in (3.14) and using Qmpwmp = 0, QLPump = 0 leads one to the 
statement of the theorem. 

Lemma 4.3. The operators RO,(Z)V'/~ and IV1'/zR~m(z) are HilbertSchmidt for all 
z E n,. 
ProoJ Consider, for instance, the operator lVI'flRh(z). Represent it as follows 

where D = (bLx + h ~ ) ' f l r ; ' ~ ( - l ) ,  the operators hr and r&) being defined in 
(2.1), (3.7). The operator DRo,(z) is bounded for Imz # 0 due to 

I VI l/'Ro,,, (2) = I V I1/'D-' DRh (z) (4.3) 

Consider the HilbertSchmidt norm 

where 
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By making use of Eqs. (3.3) and (3.4) one gets 

II lVll'zD-l IIiG $ C m L &  b 3  l V ( ~ , x d l ~ m ( ~ )  

so that the product (4.3) is HilbertSchmidt. The operator RO,(Z)V' /~  can be considered 
in the same way. 

We now proceed to study the resolvent's difference (2.23). Consider the Born expansion 
for its trace 

m 

trri,(z) = Cf"(Z) f"(Z) = tr[(-Rom(z)V)"R0,(z)] .  (4.4) 
n=1 

The following result shows that this series is an asymptotic expansion as z 4 00. 

Lemma 4.4. Let conditions (2.3) hold true with po = 1. Then in the l i t  z + 
CO \ rm (2.24) the functions (4.4) have the following asymptotics uniformly in argz: 

f ( z )  = c,z-* + 0 (z-") (4.5) 
where 

eiz(I-n)/4 m 
n -  - (-1)lmln 4rrn l dp L1.r V " ( P , X ) .  

ProoJ We give the proof for the case Imz > 0. Consider equation (3.5) for the operator 
Ro,(z). It Can be rewritten as 

where the last exponent is the free propagator 
, (x  - X')Z 

exp(-itho](x,x') = - 1 expI-1 4t ~} t > 0. 
2JTt 

Substituting this in (4.4) yields 

xF(t1, ..., tn-l,t"+tO;xl, ..., X " )  (4.6) 
where xn+l X O ,  

The integral over xo in (4.6) involves only an exponent of a quadratic polynomial in xo and 
is evaluated explicitly. After that the dependence of the resulting integrand on t,,, f. is only 
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through the sum ro + t,. Passing to new variables Q = ro 9 t,,, calculating the integral over 
L. and denoting ri = t. yields 

V V Kostykin et a1 

X F  (ti. . . . , t.: XI. . . . , x,) (4.9) 
wherex.+l=:xl a n d T = t i + J . . . + t ,  . 

In (4.9) the z-dependence of integrand is factorized in the first exponent. That is why 
the asymptotics at z + 00 are determined by a vicinity of the point tl = . . . = t, = 0. 
First, let us evaluate the asymptotics of F near this point. To this end we rewrite (4.7) in 
an integral form. Substituting in (4.8) the explicit expressions (2.7) for the function qmp 
and making use of the addition formula for the Legendre polynomials 1341 

where Zlml stands for the modified Bessel function, leads one to the representation 

F(t1, . . . , t,,; x 1 , .  . . , x,,) = i-'exp -iBmT f irr- { " I n  2 1 
x im,. . i m p i d p i  V@i, x1) ... V(p., m) 

n 

(4.10) I *' 1 X n hj exp i$ (Pi" + COS Bti Jlml (hjPjPj+i) 
j-1 

where pn+l and hj = B/(2sinBfj). 
In the limit tj + 0 (hj -+ CO) one can replace the Bessel functions by their asymptotics 

Jm(h) = (~xA)-"~ exp (Ail. inm/2 7 iz/4) + 0 (4.11) 

Upon substituting this in (4.10) it is readily seen that the leading order of the asymptotics 
is due to the terms of (4.1 1) with the minus sign, so that 

* -  

This integral is evaluated by making use of the asymptotics (Aj -+ 00) 

(4.12) 

(4.13) 
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which follows from the Erdelyi lemma [35]. Applying it repeatedly to the integrals of (4.12) 
over m, . . . , p. yields 

F (ti,. . .+ f ;  XI,. . . , ~ d  - '(-l)l"l"e-"/4(xT)-'/Zlmdp V ( p .  n l J ) .  . . V ( p ,  X J )  

which describes the asymptotics of F as tj -+ 0. 
Upon substituting these asymptotics in (4.9) for f,,(z) the integral over XI, . . . , n, takes 

a form like (4.12). Its asymptotics as t j  -+ 0 can be evaluated by means of (4.13) to yield 

The last integral is calculated explicitly by passing to new variables 
k 

T y = C t j  k = l , 2  ,..., n. 
j = l  

This yields the asymptotics~ (4.5). 

Pmojojtheorem 2.7. From the relation 

and lemma 4.1, it follows that &(z )  is trace class for Imz # 0. The last equation follows~ 
r i , (z)  = -~om~z)v'~~r,~z~lvl'~~Rom(z) 

a 
h l im(z )  = - tr [I VIi&7&&(z) V'%(Z)] = - tr [r,cz,,am CL)]. 

As z goes to emP. by making use of decomposition (2.19) one can rewrite this in the form 
1 

2kmp(Z) 
t r k ( z )  = ~ ( i k m p ( z ) ) - 3 ( ~ m p . ~ T m ( z ) ~ m p )  

Lemmas 4.1 and 4.2 follow statement (i) of the theorem. Lemma 4.4 foUows statement (ii). 

5. The Levinson formula 

We begin with a result that extends corollary 2.6. 

Lemma5.l. For all p = 1.2, ... 
logdet S, (~,p - 0) - logdet S, (emp + 0) = xi. (5.1) 

Proof: 
residue 4. Integrating it anticlockwise along a small loop yp around emP yields 

Due to theorem 2.7, the function tr&,(z) has a simple pole in z = emp with 

iP dz tr 8dz) = xi. 

Due to (2.26), the integral can be as well calculated through the spectral shift function to 
give 

dz trR,(z) = 2xi lim [e, (emp + 8 )  - &, (cmP - S)] . 
6+0 

Therefore, the spectral shift function has a jump in every~threshold 

Cm (cmp +o) - C m  (Emp -0) = 1 2' 
The relation (2.27) between cm(E) and the S-matrix follows (5.1). 
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Proof of theorem 2.8. Let Mm be the number of eigenvalues of the Hamiltonian Hm, ,LLJ 
be their multiplicities and N,,, = 

V V Kowykin et a1 

pj. Define the function 

where the last term is the leading order of the asymptotics of the trace as z + cc \ r,. 
Theorem 2.7 follows that F(z) is analytic on U,. It has simple poles with residues 4 in 
the points cmP, M, poles in the eigenvalues of H, with residues -pj ,  and a simple pole 
in the origin. 

Let R be a large positive number lying between two thresholds c,,,c,,+~ with 
n = n(R). Consider a contour C that goes from a point E,O - 6 along the upper cut 
z = E + io to the point R +io, then anticlockwise along circle CR of radius R to the point 
R -iO and then along the lower cut z = E - io to the initial point E,O - 6. The integral of 
F ( z )  along this contour is the sum of residues in the eigenvalues and in the origin: 

In the limit R + 00 \ rm contribution of the circle CR vanishes as F(z) = o (z-') due to 
theorem 2.7. By making use of (2.25) and (2.28), the integrals along the upper and lower 
cuts are expressed through the S-matrix and the sum of residues in the thresholds. One gets 

-logdetS, ( e , ~  +OJ) -a i+ logdetS , , , (R)+x logdetS,(E)[z?: -rrin(R) 
" ( R )  

p=1 

1 = -2ziNm--(-l)"" dpdx3 V(p,x3). 
2 L: 

Due to lemma 5.1, the jumps of the S-matrix in thresholds cancel the last term of the 1.h.s. 
In the limit R -+ M \ rm one gets (2.29). 
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